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LETTER TO THE EDITOR 

Chaos in gauge theories possessing vortices and monopole 
solutions 

C Nagaraja Kumar and Avinash Khare 
Institute of Physics, Sachivalaya Marg, Bhubaneswar 75 1005, India 

Received 12 December 1988, in final form 12 May 1989 

Abstract. We have looked for the signature of chaos in the Abelian Higgs model and SO(3) 
Georgi-Glashow model which possess vortices and monopole solutions respectively. On 
applying PainlevC analysis we find that most of the type-I region of superconductivity in 
the Abelian Higgs model and A > 2g2 region in the Georgi-Glashow model is non-integrable 
(here A is the Higgs coupling while g is the gauge coupling constant). Further using the 
Toda-Brumer criterion we find that the critical energy for the onset of chaos is E, = &c:/c, 
and E, = m4/54A in the Abelian Higgs model and Georgi-Glashow model respectively. 

It is well known that the sine-Gordon and Kdv like non-linear systems have infinite 
conserved quantities and hence are completely integrable systems (Lamb 1980). On 
the other hand, another non-linear system, i.e. pure Yang-Mills theory, has been shown 
to be chaotic under suitable assumptions. In fact it has been shown to be a Kolmogorov 
K-system with strong statistical properties (Baseyan et a1 1979, Matinyan et al 1980, 
Savvidy 1984). In a way solitons and chaos are paradigms for opposite extremes of 
non-linear behaviour. Can they coexist together? For example is there chaos in 
Yang-Mills theory (more generally in gauge theories) possessing topologically non- 
trivial finite energy solutions? This is the question we would like to raise and partially 
answer in this letter. In particular, we show that under suitable assumptions the Abelian 
Higgs model and SO(3) Georgi-Glashow model, which admit vortex (Nielsen and 
Olesen 1973) and monopole (t’Hooft 1974, Polyakov 1974) solutions, respectively, 
exhibit chaos. In both cases we confine ourselves to the region where the gauge and 
the Higgs fields are homogenous in space and reduce the problem to a non-linear 
mechanical system. By applying Painlev6 analysis (Steeb and Louw 1986 and references 
therein) we find the following. 

(i) The Abelian Higgs model is algebraically non-integrable in the case 
A2(=8c4/e2) < f ,  i.e. in most of the type-I region of superconductivity. 

(ii) The SO(3) Georgi-Glashow model is algebraically non-integrable in A > 2 g 2 .  
In view of the non-integrability we apply the Toda-Brumer criterion (Toda 1974, 
Brumer and Duff 1976) and find that the critical energy for the onset of chaos is 
E,  = c:/c4 and E, = m4/54A in the above-mentioned two models. 

The Lagrangian density for the Abelian Higgs model is given by 

( 1 )  CJFe=-’F FP”+- :(~,+)*(D’+)+~21+12--41+14 
4 

where F,,, is the electromagnetic field ( FWy = a,A, -a,A,) and D,+ = (a, +ieA,)+. 
The field equations are 

D, Dw+ = - 2 ~ 2 4  +4~44’+*  

dYFWy = $ie(4*8,4 - &3,+*) + e2A,+*+. 
(2a)  

( 2 b )  
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As has been shown by Nielsen and Olesen (1973), this model admits (static) vortex 
solutions of vorticity n ( n  = *l ,  1 2 , .  . .). It is also known that the vortex-vortex 
interaction is attractive in the type-I region of superconductivity (i.e. A'= 8c4/e2< 1 )  
while it is repulsive in the type-I1 region ( A 2 >  1 ) .  We shall consider this model in the 
regime where the space variations are negligible compared to their time variation. We 
make the ansatz 

A ~ ( x ,  t )  = 0 (3a) 

d x ,  t )  = exp[iw(x+y)lq,(t). (3b) 

&( t )  = -d?eoq: - e2hq: (4a) 

q 2 ( t )  = 2 ( c 2 - 0 2 ) q 2 - 2 d ? e o h q 2 - e 2 h 2 q 2 - 4 c 4 q : .  (46) 

Al(x ,  t )  = A2(x, t )  = h(t) /d? 

Using the ansatz in field equations (2a) and (2b) we obtain 

The equations take a simplified form if we make the substitution h ( t )  = q,(t)-d?w/e 
in equations (4a) and (4b). We get 

i i l ( t )  = -e2q,q: ( s a )  

q2( t) = 2c2q2 - 4c4q: - e2q:q2. (5b) 

These equations of motion follow from the Hamiltonian 

(6) 2 2 2  = M + P : ) +  e qlq2+c4(q;- C2/2C4l2. 

It is worthwhile pointing out that in the Yang-Mills case too the Hamiltonian has the 
non-central piece q:q; which is responsible for chaotic behaviour. Hence we expect 
that the H as given by equation (6) will also show chaotic behaviour for some range 
of parameter values. 

Painleve' test. As a first step in the study of chaotic behaviour, let us check if the system 
as given by equation (6) is integrable or not. To that end one must perform the 
singular-point analysis and determine the resonances (Steeb and Louw 1986 and 
references therein). Recent work of Yoshida (1983) tells us that the necessary condition 
for the system to be algebraically integrable is that every resonance should be a rational 
number. 

The Hamiltonian equations which follow from ( 6 )  are 

4 1  =PI 9 2  = P 2  

01 = -e2q1q: p2 = -e2q:q2-4c,q:+2c2q2. 
Now we have to find the dominant behaviour of qi and pi  in the complex time (7) 
domain by retaining only the leading terms (in our case it amounts to neglecting the 
term 2c2q2). On substituting 

q i = C i ( T - 7 0 ) - ~ ~  

p i = d , ( ~ - ~ O ) - " ~  

in (7a) and (76) we find ( i = l ,  2) 

(9a) 

(9b) 

n i = m i + l  d. = -c. 

2 2  e2c: = -2 + 8c4e2 e c2 = -2. 
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The resonances (Kowalewski exponents) can now be obtained by substituting 

qi = ci ( T -  TO)-^ + bi (7 - TO) -I+'  

pi = - Ci( 7 - + di ( 7  - 

into (7a) and (76). To leading order in bi and di this yields 

where Q( y )  is a 4 x 4 matrix whose elements depend on y. The roots of det Q are the 
resonances. In our case we find that the resonances are 

-1,4,2* fJ64c4/ e' - 7. (12) 

Two of the resonances are complex if A2(=8c4/e2)<i so that for A 2 < i  the Abelian 
Higgs model is not algebraically integrable (Yoshida 1983). 

Toda-Brumer criterion. Since the Abelian Higgs model is not integrable for A 2 < i  it 
may be worthwhile to enquire if it exhibits chaos and, if so, what is the critical energy 
for the onset of chaos. This can be done by applying the Toda-Brumer criterion (Toda 
1974, Brumer and Duff 1976) which essentially determines if the trajectories of two 
nearby points diverge exponentially in time. It turns out that if any eigenvalue h of 
the 2 x 2 matrix d2U/dqi  aqj (where U ( q , ,  q2) is the potential) is negative then the 
system shows exponential instability. It is easily seen that A is negative provided 

where 

In our case the potential U ( q , ,  q2) as given by (6) is 

(15) 1 2 2 2  U ( % ,  q 2 )  = z e  41q2+c4(q:-c2/2c4)2. 

Hence the Abelian Higgs model shows exponential instability if 

yt - s = 12c4q2 - 2c2q: -3e'q:q: < 0. (16) 2 4 

This gives us 

(17) 

in U ( q , ,  q2) given 

(18) 

2 2  2 2  e 4 I ,min = 4 ~ 2  - s ~2 

beyond which the system shows instability. On substituting 
by (15) and minimising with respect to q2 we obtain the critical energy 

E =Ir 2 
c 10Sc2/c4 

beyond which the Abelian model may exhibit chaos. It may be noted here that the 
Toda-Brumer criterion gives only a lower bound to the critical (threshold) energy for 
the onset of chaos. 

Let us now consider the question of chaos in the SO(3) Georgi-Glashow model 
which has a monopole solution. The Lagrangian density for this model is given by 

z= - ~ F ; ~ F w Y + ~ D  ~ o D w ~ " - -  : A ( c # J " ~ "  -m2/A)2 (19) 
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where 
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The field equations are 

D'"Fi,  = -geab'+bDY+C 

D'"D,+' = - h ~ $ " ( + ~ + ~  - m 2 / h ) .  

As in the Abelian Higgs model we work in the regime in which the fields are homogenous 
in space. In particular our ansatz is 

A,"(x, t )  = 0 AP(x, t )  = saUuJ( t )  

+"(x, t )  =&v'(t) 
a'( t )  = U'( t )  = U'( t )  = q l ( t )  

= T 2 ( t )  = v3( t )  = q 2 ( t ) .  

The ansatz automatically takes care of the Gauss law constraint. The remaining field 
equations reduce to 

i i i ( t )  = -6g2qiq: -3g2q:  (25 U )  

i 2 ( t )  = -6g2q2q: -6hq:+m2q2 .  ( 2 5 b )  

(26 )  

Proceeding as in the Abelian Higgs model one can perform the PainlevC test and 
calculate the resonances. It turns out that the leading-order exponents are again as 
given by ( 9 u )  with c, and c2 now being given by 

The corresponding Hamiltonian is 
2 2 2  H = 1 ( p :  + p i )  + 3g q 1 q 2  + $g2q;' + $ A  (4: - n 1 ' / 6 h ) ~ .  

1 
C; = 

2 ( g 2  - 1 8%: = 
3 ( h  - 2 g 2 )  3(h  - 2 g 2 ) '  

In this case the resonances turn out to be 

-1 ,4 ,  $* J ( 2 g L +  7 ) / ( 2 g L  - A ) .  

Two of the resonances are complex if h > 2g2 and hence the system is algebraically 
non-integrable in that region. 

For the non-integrable region, we have again applied the Toda-Brumer criterion. 
We find that the SO(3)  Georgi-Glashow model shows exponential instability if 

18g2q:-3m2q:+ (54h -36g2)q:q:  -2m2q:+36Aqi<0 .  (29 )  

This is a complicated constraint and we are unable to solve it exactly and find E ,  for 
the onset of chaos. We have therefore tried to calculate E ,  for various values of q1 
and q2 and among them we find that q1 = 0 gives the lowest E, .  On putting q1 = 0 in 
(29 )  we find that &= m2/18h.  Using these values of q1 and q2 in the potential energy 
U(q , ,  q2) given by (26 )  we find that the critical energy is E , =  m4/54h beyond which 
the SO(3)  Georgi-Glashow model exhibits chaos. 
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Thus we have seen that both the Abelian Higgs model and SO(3) Georgi-Glashow 
model may exhibit chaos for a range of parameter values. Before one can draw any 
firm conclusion one must perform a surface of section technique, calculate the Lyapunov 
exponents and study the stability of periodic solutions. We believe that these studies 
will confirm the chaotic behaviour of the systems (Kumar and Khare 1989) because 
U la Yang-Mills theory both Hamiltonians (see ( 6 )  and ( 2 6 ) )  have the non-central 
potential q:q:. Because of this we also believe that both the Abelian Higgs model 
and SO(3) Georgi-Glashow model will also exhibit quantum chaos (Haller et a1 1984, 
Pullen and Edmonds 1981) for a range of parameter values. 

It is gratifying to note that in the Abelian Higgs model the chaos and vortices exist 
in two different regions, i.e. whereas vortices have been seen in type-11 superconductors 
we find that chaos may exist in almost the entire type-I region. We suggest that one 
could look for the signature of chaos in the type-I region at large p ( p  = J x 2 + y 2 )  
where both gauge and Higgs fields are approximately uniform in space. 
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